Spectroscopic Study of Dehydrochlorination and Exchange with D₂ in WH₂Cl₂(PMe₂Ph)₄: Unexpected Stereochemical Rigidity of Dodecahedra Containing both Hydride and Chloride Ligands. Crystal and Molecular Structure of $W(H)_3(\eta^2-C_6H_4PMe_2)(PMe_2Ph)_3$

Helmut Rothfuss, John C. Huffman, and Kenneth G. Caulton*

Department of Chemistry and Molecular Structure Center, Indiana University, Bloomington, Indiana 47405

Received July 20, 1993®

 $WH_2Cl_2L_4$ (L = PMe_2Ph), formed by oxidative addition of H₂ to WCl_2L_4 , is stereochemically rigid, and, in solution, undergoes exchange with D_2 by a mechanism dissociative in L; NMR evidence is consistent with $WH_2Cl_2L_4$ being a crowded molecule. Because of this mechanism, $WH_2Cl_2L_4$ is a catalyst for conversion of HD to H_2 and D_2 . LiDBEt₃ converts $WH_2Cl_2L_4$ into exclusively one isotopomer of WH_2DCl_4 , a dodecahedron which is stereochemically rigid on the time scale of 1 day. The mechanism of this halide substitution also appears to begin with phosphine dissociation. Attempted nucleophilic substitution of one or more chlorides in WH₂Cl₂L₄ by KN(SiMe₃)₂ or LiR $(R = {}^{n}Bu, {}^{t}Bu, CH_{2}{}^{t}Bu, Me, NMe_{2})$ leads instead to dehydrohalogenation (followed by ortho-metalation of the P-Ph group, giving a nonfluxional WH₂Cl(η^2 -C₆H₄PMe₂)L₃) or to β -hydrogen elimination (to give stereochemically-rigid WH₃ClL₄ or WH₃(η^2 -C₆H₄PMe₂)L₃). The last compound was shown by X-ray diffraction to have a dodecahedral structure of mirror symmetry. Crystal data (-170 °C): a = 13.770 (7) Å, b = 16.567(9) Å, c = 14.245(8) Å, and $\beta = 99.97(2)^\circ$ with Z = 4 in space group $P2_1/c$. The metalation products are proposed to arise from an intermediate W^{II}HClL₄, which is lightly stabilized by Cl \rightarrow W π donation.

Introduction

We have described¹ reasons why polyhydride compounds of the transition metals which also contain at least one π -donor ligand might exhibit useful reactivity under unusually mild conditions. The halides represent one class of π -donor ligands, with the added virtue that systematic electronic modification is possible by surveying all halides, F-I. Transition metal hydrido/ halide compounds are not numerous, and we were attracted to $WH_2Cl_2L_4$ (L = PMe_2Ph), which was reported² as the side product (ca. 15% yield) of the synthesis of $W(N_2)_2L_4$. A brief report of its reactivity has appeared, as has its dodecahedral structure (Chart 1, which shows only the inner coordination sphere and gives labeling of phosphorus nuclei).³ We report here further studies of this hydrido halide and its conversion to WH₃ClL₄, as well as attempts at replacement of chloride ligands by a variety of nucleophiles. Such attempts lead to dehydrohalogenation to form WH₂Cl(η^2 -L)L₃ or β -H elimination to form WH₃(η^2 -L)L₃ or WH₄L₄ (η^2 -L = η^2 -PMe₂C₆H₄). All of these compounds except WH₄L₄ are found to display an exceptional resistance to fluxionality.

Experimental Section

General Methods. All manipulations under ambient conditions (25 °C, 1 atm) were carried out in a glovebox under an argon atmosphere. The glassware was rigorously flame dried; NMR tubes were kept at 110 °C in an oven. Aromatic solvents were dried over alkali metal, and hexanes over sodium/benzophenone; all solvents were freshly distilled before use. NMR spectra (values in ppm) were recorded on Bruker AM500 (1H and 13C[1H] NMR) and Nicolet NT360 (1H, 31P[1H], and ²H{¹H} NMR) spectrometers. Eighty-five percent H₃PO₄ served as an external standard for phosphorus chemical shifts, a negative chemical shift being upfield. Infrared spectra were obtained on KBr pellets on a Nicolet 510P FT-IR instrument.

Chart 1

WCl₂(PMe₂Ph)₄ and WH₂Cl₂(PMe₂Ph)₄. Under an argon atmosphere, 2.0 g (3.3 mmol) of WCl₄(PMe₂Ph)₂⁴ was dissolved in 150 mL of THF to give an orange solution. Addition of 0.95 mL (6.7 mmol) of PMe₂Ph produced a red solution (due to WCl₄(PMe₂Ph)₃). A 40 g amount of 0.4% Na amalgam (\sim 5% excess) was added, and the solution was stirred for 3 h. The THF was removed under vacuum and the residue dissolved in 50 mL of toluene. The resulting orange-brown solution was filtered through 2 cm of Celite to remove NaCl and Hg. The volume of the filtrate was reduced to 10 mL, and 10 mL pentane was added. After 12 h at -20 °C, orange crystals of WCl₂(PMe₂Ph)₄ were collected by filtration and washed with pentane (yield 1.75 g, 65%). ¹H NMR (C_6D_6 , 360 MHz, 25 °C): 10.7 (4H, para); 8.59 (8H, ortho or meta); 7.56 (8H, meta or ortho); 2.15 (24H, PMe2Ph), all peaks broadened. No 31P signal was observable.

A solution of 1.0 g (1.239 mmol) of WCl₂(PMe₂Ph)₄ in 10 mL of toluene in a 300-mL flask was subjected to three freeze-pump-thaw cycles and placed under ~ 1.5 atm (25 °C) of H₂. After the solution was stirred for 10 h at room temperature, 10 mL of pentane was added to precipitate WH₂Cl₂(PMe₂Ph)₄ in quantitative yield. ¹H NMR (toluened₈, 25 °C, 500 MHz): 7.29–7.36 (m, Ph H), 7.12–7.19 (m, Ph H), 6.70–7.12 (m, Ph H), 1.60 (12H, vt, N = 7.8 Hz, CH₃–P), 1.52 (12H, vt, N = 8.6 Hz, CH₃-P), -1.52 (2H, m, ${}^{1}J_{W,H} = 10.4$ Hz, H-W). ${}^{31}P{{}^{1}H}$ NMR (C₆D₆, 25 °C, 146 MHz): -10.9 (t (²J_{PP} = 14.8 Hz) with W satellites $({}^{1}J_{W,P} = 167.8 \text{ Hz}); -14.1 (t ({}^{2}J_{P,P} = 14.8 \text{ Hz}) \text{ with W satellites}$ $({}^{1}J_{W,P} = 191.3 \text{ Hz})$. IR (KBr, $\nu(WH_2)$): 1894 and 1919 cm⁻¹

Higher yields (>90% with respect to WCl₄(PMe₂Ph)₂) of WH₂-Cl₂(PMe₂Ph)₄ may be obtained by treating the filtered toluene solution from the above WCl₂(PMe₂Ph)₄ synthesis directly with 2 atm of H₂,

[•] Abstract published in Advance ACS Abstracts, June 1, 1994. (1) Lunder, D. L.; Lobkovsky, E. B.; Streib, W. E.; Caulton, K. G. J. Am.

Chem. Soc. 1991, 113, 1837.
 Dadkeh, H.; Kashef, N.; Richards, R. L.; Hughes, D. L.; Pombeiro, A. J. L. J. Organomet. Chem. 1983, 255, C1.

⁽³⁾ Fakley, M. E.; Richards, R. L. Transition Met. Chem. 1982, 7, 1.

⁽⁴⁾ This was prepared similarly to the preparation of WCl₄(PMe₃)₃ (Sharp, P. R.; Bryan, J. C.; Mayer, J. M. Inorg. Synth. 1990, 28, 326). The additional phosphine ligand in the resulting WCl₄(PMe₂Ph)₃ was removed at 110 °C under high vacuum for 1 h.

since the air sensitivity of WCl₂(PMe₂Ph)₄ leads to loss on workup and isolation. Thus, the crude product from Na/Hg reduction of 7.2 g (12 mmol) of WCl4(PMe2Ph)2 was dissolved in 50 mL of toluene and treated with H₂ for 10 h at 25 °C. The major portion of WH₂Cl₂(PMe₂Ph)₄ had precipitated as fine orange crystals by this time. These were dissolved by addition of 100 mL of THF and 100 mL of toluene. Filtration through 1 cm of Celite removes any NaCl (from the WCl4(PMe2Ph)2 reduction). The solution was concentrated in vacuo to a volume of 50 mL, which precipitates most of the WH2Cl2(PMe2Ph)4. These crystals were collected by filtration and slurried for 2 h in 50 mL of hexane to remove residual THF; this treatment is required for effective THF removal, since 6 h of vacuum treatment of the solid product failed to remove all THF. Yield: 6.0 g (62%). Removal of the THF/toluene volatiles from the filtrate, extraction of the brown residue with 30 mL of toluene, filtration (Celite), volume reduction (vacuum) to 10 mL, and addition of 10 mL of hexane precipitates an additional 2.8 g of WH₂Cl₂(PMe₂Ph)₄, for a combined vield of 91%.

WD₂Cl₂(PMe₂Ph)₄. A 100-mg amount (0.124 mmol) of WCl₂(PMe₂-Ph)₄ was dissolved in 0.5 mL of toluene. A 3-mL volume of pentane was added carefully to decrease the polarity of the solvent but to keep all WCl₂(PMe₂Ph)₄ still in solution. The solution was frozen in liquid nitrogen, pumped, and pressurized with about 1.5 atm (25 °C) of D₂. After the solution was stirred at 20 °C for 8 h, the less-soluble WD₂-Cl₂(PMe₂Ph)₄ precipitated quantitatively. The solution was removed via cannula, and the remaining (orange) WD₂Cl₂(PMe₂Ph)₄ was dried. ¹H NMR (C₆D₆, 25 °C, 500 MHz): 7.34–7.38 (m, Ph H), 7.17–7.20 (m, Ph H), 6.97–7.08 (m, Ph H), 1.63 (12H, vt, N = 7.6 Hz, CH₃-P), 1.56 (12H, vt, N = 8.4 Hz, CH₃-P). ³¹P{¹H} NMR (C₆D₆, 25 °C, 14G MHz): -11.1 (t (²J_{P,P} = 16.3 Hz) of quint (²J_{P,P} = 8.8 Hz) with W satellites (¹J_{W,P} = 190.7 Hz)). IR (KBr, ν (WD₂)): 1375 and 1401 cm⁻¹.

WH3Cl(PMe2Ph)4. A 126.6-mg amount (0.156 mmol) of H2WCl2L4 was dissolved in 20 mL of THF and cooled to -78 °C. A 0.15-mL volume of a 1.0 M solution of LiHBEt₃ in THF was carefully added (syringe) to the well-stirred solution. The cooling bath is slowly warmed up to -10°C and kept at this temperature for 2 h. The color changes from yelloworange to bright yellow. Conversion to H₆WL₃ (identified by ³¹P{¹H} and ¹H NMR) partially occurs at temperatures higher than 0 °C. In order to prevent this, the following steps were carried out at -10 °C. The volume is reduced under vacuum to about 1 mL. Addition of hexanes (20 mL) precipitates unreacted WH2Cl2L4 and LiCl. The yellow solution was filtered through 1 cm of Celite. Reducing the volume to about 2 mL and cooling this concentrated solution to -78 °C precipitates WH3ClL4 as a yellow powder in nearly quantitative yield. ¹H NMR (C₆D₆, 25 °C, 500 MHz): 7.65-7.69 (m, Ph H), 7.53-7.56 (m, Ph H), 7.34-7.38 (m, Ph H), 7.03-7.16 (m, Ph H), 6.92-6.94 (m, Ph H), 2.15 (1H, m with W satellites (${}^{1}J_{W,P} = 5.0 \text{ Hz}$), H_z), 1.82 (6H, vt, N = 6.6 Hz, CH₃-P_M), 1.65 (6H, d, ${}^{2}J_{P,H}$ = 6.6 Hz, CH₃-P_A), 1.50 (6H, vt, N = 6.4 Hz, CH₃- P_M), 1.32 (6H, d, ${}^{2}J_{P,H} = 8.2 Hz$, CH₃- P_Q), -2.54 (2H, m with W satellites $({}^{1}J_{W,P} = 22.8 \text{ Hz}), H_{x}). {}^{31}P{}^{1}H} \text{NMR}, (C_{6}D_{6}, 25 \text{ °C}, 146 \text{ MHz}): 2.12$ (P_Q, dt, $(J_{M,Q} = 15.2 \text{ Hz}, J_{A,Q} = 39.3 \text{ Hz})$ with W satellites (${}^{1}J_{W,P} =$ 135.1 Hz)), -11.01 (P_M, dd ($J_{A,M} = 15.7$ Hz, $J_{M,Q} = 15.2$ Hz) with W satellites (${}^{1}J_{W,P} = 192.1$ Hz)), -18.72 (P_A, dt ($J_{A,Q} = 39.3$ Hz, $J_{A,M} =$ 15.7 Hz) with W satellites (${}^{1}J_{W,P} = 128.0$ Hz)). Assignment of P_A and P_Q by selective decoupling of phosphorus in ¹H NMR on the assumption that from 92.1 and 22.4 Hz, respectively, the greater coupling constant refers to H_z-P_Q trans coupling. IR (KBr, $\nu(WH_3)$): 1757, 1883 and 1945 cm⁻¹. Decomposition during recrystallization prevented elemental analysis.

 $WD_3Cl(PMe_2Ph)_4$. In a 100-mL flask, 42 mg (0.056 mmol) of WH_3 -Cl(PMe_2Ph)_4 was dissolved in 10 mL of toluene. The solution was frozen in liquid nitrogen and evacuated. Subsequently, the flask was pressurized with 1.5 atm of D₂. After thawing, the solution was stirred for 10 h at 25 °C. In order to ensure isotopically-pure WD_3ClL_4 , the gas phase was replaced with pure D₂ and stirred at 25 °C for 10 h. Removal of the toluene under vacuum yielded pure $WD_3Cl(PMe_2Ph)_4$. $^2H_4^{1}H_3$ NMR (protiotoluene, 25 °C, 55 MHz): 2.03 (1D, br, D₂), -2.61 (2D, br, D_x). $^{31}P_4^{1}H_3$ NMR chemical shifts are unchanged compared to $WH_3Cl(PMe_2Ph)_4$.

WH₂Cl(η^2 -C₆H₄PMe₂)(PMe₂Ph)₃. The following procedure describes the reaction of WH₂Cl₂P₄ with 1 equiv of 'BuLi. Reactions with Li-CH₂'Bu or KN(SiMe₃)₂ were carried out similarly (the solid bases were first dissolved in 1 mL of toluene). An 81.1-mg amount (0.100 mmol) of WH₂Cl₂(PMe₂Ph)₄ was dissolved in 5 mL of toluene. While the solution was stirring, 56 μ L of 'BuLi solution (1.8 M in *n*-hexane) was slowly added via syringe. The color changed from orange to yellow-green. After 5 min of stirring, the solvent was removed and the oily residue dissolved in 4 mL of hexanes. The solution was filtered over Celite and the volume subsequently reduced to 1 mL. After 12 h at -20 °C, yellow crystals were formed (yield: 21 mg = 27%). The mother liquor showed a darkening during concentration of the solution, and storage at -20 °C led simply to decomposition. Even the crystalline compound is thermolabile. In the course of 2 d, it decomposed under argon at 25 °C. ¹H NMR (C₆D₆, 25 °C, 500 MHz): 8.45 (1H, m, Ph H*),⁵ 7.82 (1H, apparent triplet, 7.3 Hz, Ph H*),⁵ 7.73 (1H, apparent triplet, 7.6 Hz, Ph H*),⁵ 7.31-7.60 (m, Ph H), 6.91–7.10 (m, Ph H), 6.45 (1H, dd, ${}^{3}J_{P,H} = 12.4$ Hz, ${}^{3}J_{H,H}$ = 7.0 Hz, Ph H^{*}),⁵ 1.57 (6H, d, ${}^{2}J_{P,H}$ = 7.1 Hz, CH₃-P), 1.47 (6H, vt, N = 7.2 Hz, CH₃-P), 1.17 (6H, d, ${}^{2}J_{P,H} = 8.9$ Hz, CH₃-P), 1.17 (6H, vt, N = 6.9 Hz, CH₃-P), -0.82 (2H, d (²J_{P,H} = 44.9 Hz) of d (²J_{P,H} = 53.2 Hz) of HH'P_AP_{A'} with W satellites $(^{1}J_{W,H} = 6.9$ Hz, W-H)). $^{13}C_{-}$ {¹H} NMR (C₆D₆, 25 °C, 126 MHz): 151.8 (d, ${}^{1}J_{P,C} = 42.6$ Hz, ipso carbon of ortho-metallated ring), 147.9 (d, ${}^{2}J_{P,C} = 28.5$ Hz, C-W), 143.0 (vt, N = 33.1 Hz, ipso carbon of $P_A P_{A'}$), 137.8 (s, Ph C), 136.1 (d, ${}^{1}J_{P,C}$ = 21.1 Hz, ipso carbon), 133.1 (d, J_{P,C} = 11.3 Hz, Ph C), 127.3-131.7 (m, Ph C), 125.6 (s, Ph C), 122.2 (d, $J_{P,C} = 7.2$ Hz, Ph C), 121.9 (s, Ph C), 21.6 (d, ${}^{1}\text{H}_{P,C}$ = 25.7 Hz, CH₃-P), 20.6 (d, ${}^{1}J_{P,C}$ = 21.8 Hz, CH₃-P), 18.2 (vt, N = 26.6 Hz, CH_3-P), 16.6 (vt, N = 22.8 Hz, CH_3-P). ³¹P{¹H} NMR (C6D6, 25 °C, 146 MHz) -11.7 (2P, apparent triplet (16.8 Hz) with W satellites $({}^{1}J_{W,P} = 188.9 \text{ Hz})), -20.5 (1P, d ({}^{2}J_{P,P} = 45.0 \text{ Hz})$ of t (${}^{2}J_{P,P} = 16.0 \text{ Hz}$) with W satellites (${}^{1}J_{W,P} = 125.2 \text{ Hz}$)), -59.4 (1P, $d(^{2}J_{P,P} = 45.0 \text{ Hz})$ of $t(^{2}J_{P,P} = 17.9 \text{ Hz})$ with W satellites ($^{1}J_{W,P} = 133.1$ Hz)). IR (KBr, v(WH₂)): 1848 and 1912 cm⁻¹. Decomposition during recrystallization prevented elemental analysis.

 $WH_3(\eta^2-C_6H_4PMe_2)(PMe_2Ph)_3$. The compound was synthesized by reaction of WH₂Cl₂(PMe₂Ph)₄ with 2 equiv of the following bases: 'BuLi (as 1.8 M solution in n-hexane), LiCH2^tBu (in toluene), LiMe and LiNMe2 (as solids). In addition, $WH_3(\eta^2-C_6H_4PMe_2)(PMe_2Ph)_3$ was obtained reacting WH₃Cl(PMe₂Ph)₄ with 1 equiv of n-BuLi (1.6 M in n-hexane) or WH₂Cl(η^2 -C₆H₄PMe₂)(PMe₂Ph)₃ with 1 equiv of 'BuLi or LiNMe₂. As an example, the reaction of WH₂Cl₂(PMe₂Ph)₄ with 2 equiv of neopentyllithium is described. A 51.3-mg amount (0.063 mmol) of WH2-Cl₂(PMe₂Ph)₄ was dissolved in 5 mL of toluene. While the mixture was stirred vigorously, a solution of 9.9 mg (0.127 mmol) of LiCH2'Bu in 2 mL of toluene was slowly added. The orange solution turned yelloworange. It was stirred for an additional 2 h and filtered over Celite, and the toluene was removed under vacuum. The remaining yellow-orange residue was dissolved in hexanes ($\sim 1 \text{ mL}$). After 12 h at -20 °C, orange crystals of pure $WH_3(\eta^2-C_6H_4PMe_2)(PMe_2Ph)_3$ precipitated (yield: 38 mg, 81%). ¹H NMR (C₆D₆, 25 °C, 500 MHz): 7.97 (1H, m, Ph H^*), 5, 6.91–7.75 (m, Ph H), 6.51 (1H, dd, ${}^{3}J_{P,H} = 12.2 \text{ Hz}, {}^{3}J_{H,H} = 7.1$ Hz, Ph H^{*}),⁵ 1.425 (6H, vt, N = 5.1 Hz, CH₃-P), 1.418 (6H, vt, N =5.8 Hz, CH₃-P), 1.39 (6H, d, ²J_{P,H} = 7.7 Hz, CH₃-P), 1.31 (6H, d, ²J_{P,H} = 6.6 Hz, CH₃-P), 0.54 (1H, d (${}^{2}J_{P,H}$ = 51.7 Hz) of t (${}^{2}J_{P,H}$ = 30.1 Hz) of d (${}^{2}J_{P,H}$ = 5.6 Hz) of t (${}^{2}J_{H,H}$ = 7.0 Hz), W–H), -1.44 (2H, d (${}^{2}J_{P,H}$ = 64.5 Hz) of d (${}^{2}J_{P,H}$ = 37.2 Hz) of d (${}^{2}J_{H,H}$ = 7.0 Hz) of HH'P_BP_{B'} with W satellites $({}^{1}J_{W,H} = 7.5 \text{ Hz})$, W-H). ${}^{13}C{}^{1}H$ NMR (C₆D₆, 25 °C, 126 MHz): 155.6 (d (${}^{1}J_{P,C} = 41.5 \text{ Hz}$) of t (${}^{3}J_{P,C} = 3.9 \text{ Hz}$) of d $({}^{3}J_{P,C} = 1.4 \text{ Hz})$, ipso carbon of ortho-metalated ring), 147.8 (d, ${}^{2}J_{P,C}$ = 30.6 Hz, C-W), 146.2 (vt, N = 28.4 Hz, ipso carbon of $P_B, P_{B'}$), 142.7 (d $({}^{1}J_{P,C} = 29.2 \text{ Hz})$ of d $({}^{3}J_{P,C} = 5.0 \text{ Hz})$ of t $({}^{3}J_{P,C} = 2.9 \text{ Hz})$, ipso carbon of P_A), 131.1 (m, Ph C), 130.8 (vt, N = 8.6 Hz, Ph C), 130.5 (d, $J_{P,C} = 8.6$ Hz, Ph C), 130.3 (d, $J_{P,C} = 8.3$ Hz, Ph C), 129.8 (d, $J_{P,C} =$ 7.9 Hz, Ph C), 129.2 (s, Ph C), 128.2 (s, Ph C), 127.4-127.5 (m, Ph C), 123.8 (s, Ph C), 123.7 (s, Ph C), 123.4 (d $(J_{P,C} = 7.2 \text{ Hz})$ of m, Ph C), 120.6 (d ($J_{P,C} = 7.2 \text{ Hz}$) of t ($J_{P,C} = 2.9 \text{ Hz}$), Ph C), 27.9 (d, ${}^{1}J_{P,C} =$ 26.6 Hz, CH₃), 24.2 (vt, N = 27.1 Hz, CH₃), 23.2 (vt, N = 24.8 Hz, CH₃), 18.5 (d, ${}^{1}J_{P,C}$ = 16.2 Hz, CH₃). ${}^{31}P{}^{1}H{}$ NMR (C₆D₆, 25 °C, 146 MHz): -8.3 to -9.7 (3P, AB₂ system), -79.5 (1P, d (${}^{2}J_{P,P} = 11.4 \text{ Hz}$) of t $({}^{2}J_{P,P} = 18.8 \text{ Hz})$ with W satellites $({}^{1}J_{W,P} = 129.3 \text{ Hz})$, P_M). IR (KBr, v(WH₃)): 1788, 1824, and 1874 cm⁻¹.

Isotopic Exchange Catalysis. The exchange of HD with $WH_2Cl_2L_4$ was carried out by treatment of KH in benzene- d_6 with neat D_2O in one arm of an evacuated reaction vessel connected by an inverted U-turbe to $WH_2Cl_2L_4$ dissolved in benzene- d_6 . KH was used in 5% excess, and the amount of D_2O was calculated to form 1 atm HD in the known reactor volume. The head space gases were sampled at 1/2 and at 3 h and analyzed on an isotope ratio mass spectrometer. The mole ratios (Table 1) revealed the reaction to be essentially at equilibrium after 3 h at 25 °C. The reaction of KH with D_2O was vigorous and difficult to control, and its

⁽⁵⁾ H^{*} signifies protons of the ortho-metalated phenyl group.

Figure 1. Stereo ORTEP drawing of $WH_3(\eta^2-C_6H_4PMe_2)(PMe_2Ph)_3$, showing selected atom labeling. Atoms W(1), P(29), C(32), and C(37) define a noncrystallographic mirror plane of symmetry. Unlabeled atoms are carbon or (open circles) hydrogen.

Table 1. Catalysis of HD Disproportionation by WH₂Cl₂(PMe₂Ph)₄

	0.5 h	3 h		0.5 h	3 h
H ₂ , % HD, %	14.3 69.1	22.6 48.0	D ₂ , %	16.6	29.4

Table 2. Crystallographic Data for $WH_3(\eta^2-C_6H_4PMe_2)(PMe_2Ph)_3$

chem formula	C ₃₂ H ₄₆ P ₄ W	space group	$P2_{1}/c$
a, Å	13.770(7)	T, ℃	-170
b, Å	16.567(9)	λ, Å	0.710 69
c, Å	14.245(8)	$\rho_{calcd}, g \text{ cm}^{-3}$	1.533
β , deg	99.97(2)	μ (Mo K α), cm ⁻¹	39.02
V, Å ³	3200.54	Rª	0.0271
Z	4	R _w ^a	0.0290
fw	738.46		

$${}^{a}R = \sum ||F_{o}| - |F_{c}||\sum |F_{o}|. R_{w} = [\sum w(|F_{o}| - |F_{c}|)^{2} / \sum w / F_{o}|^{2}]^{1/2}$$
, where $w = 1/\sigma^{2} (|F_{o}|).$

total time of generation was about 0.5 h. Since the evolving HD was exposed to $WH_2Cl_2L_4$ during the entire generation process, the time of the first mass spectral assay is not a reliable indication of rate.

Reaction of D₂ with Solid WH₂Cl₂(PMe₂Ph)₄. A 15-mg amount (0.019 mmol) of WH₂Cl₂L₄ was dissolved in 5 mL of toluene in a 100-mL flask. The solvent was slowly removed in vacuum in order to cover as much surface of the flask with WH₂Cl₂L₄ as possible. To complete the removal of toluene, the sample was pumped at high vacuum for 18 h. The flask was then filled with 1 atm of D₂ (4.1 mmol) and kept at 25 °C for 7 days. D₂ was removed under vacuum and replaced by argon. ³¹P{¹H} as well as ²H NMR of the sample in protiotoluene shows no deuterium incorporation. The ³¹P{¹H} spectrum is known to be broadened in WD₂-Cl₂L₄.

X-ray Diffraction Study of WH₃(π^2 -C₆H₄PMe₂)(PMe₂Ph)₃. A suitable, triangular-shaped fragment was cleaved from a larger plate and affixed to the end of a glass fiber. The crystal was then transferred to the goniostat where it was cooled to -170 °C for characterization and data collection (Table 2, 6° < 2 θ <45°).⁶ All handling was performed in an inert nitrogen atmosphere, although the crystal was later discovered to be quite stable under air at 25 °C. A systematic search of a limited hemisphere of reciprocal space located a set of diffraction maxima with systematic absences and symmetry corresponding to the unique monoclinic space group P2₁/c. Subsequent solution and refinement confirmed this choice. Data were collected using a continuous $\theta/2\theta$ scan with fixed background counts at each extreme of the scan. Background corrections were made and the resulting intensities corrected for Lorentz and polarization effects. Equivalent data were averaged to yield a unique set of corrected intensities and estimated errors.

The structure was readily solved by direct methods (MULTAN78) and Fourier techniques. Anisotropic refinement rapidly converged, although two atoms exhibited nonpositive definite thermal parameters. Most hydrogen atoms were visible, although there were numerous peaks

Table 3.	Fracti	onal	Coordinates ^a	and	Isotropic	Thermal
Parameter	's ^b for	WH:	₉ (η ² -C ₆ H ₄ PM	$(e_2)(l$	PMe ₂ Ph) ₃	

atom	10 ⁴ x	10 ⁴ y	10 ⁴ z	10 <i>B</i> _{iso} , Å
W(1)	3114.8(2)	538.4(2)	2587.0(2)	10
P(2)	1348(1)	838(1)	2200(1)	14
P (11)	3504(1)	1793(1)	3466(1)	12
P(20)	4731(1)	482(1)	2037(1)	13
C(21)	5118(6)	-427(5)	1444(5)	20
C(22)	4817(6)	1214(5)	1089(5)	18
P(29)	2983(1)	-935(1)	2742(1)	14
C(30)	4012(6)	-1590(5)	3254(6)	23
C(37)	2733(5)	-173(4)	1217(5)	14
H(A)	397(6)	34(5)	355(6)	48(15)
H(B)	261(4)	45(3)	353(4)	5(11)
H(C)	322(4)	126(3)	185(4)	6(10)

^a Fractional coordinates are $\times 10^4$ for non-hydrogen atoms and $\times 10^3$ for hydrogen atoms. ^b Isotropic values for those atoms refined anisotropically are calculated using the formula given by: Hamilton, W. C. Acta Crystallogr. **1959**, 12, 609.

Table 4. Selected Bond Distances (Å) and Angles (deg) for $WH_1(n^2-C_sH_4PMe_2)(PMe_2Ph)_1$

(1 101021 11)3		
2.4498(22)	W(1)-C(37)	2.258(7)
2.4381(20)	W(1)-H(A)	1.68(8)
2.4866(21)	W(1)-H(B)	1.63(5)
2.4609(23)	W(1)-H(C)	1.62(6)
93.68(6)	P(11)-W(1)-H(A)	71.6(27)
147.67(6)	P(11)-W(1)-H(B)	75.0(19)
97.76(6)	P(11)-W(1)-H(C)	70.2(19)
80.67(17)	P(20)-W(1)-H(A)	73.2(27)
93.73(6)	P(20)-W(1)-H(B)	142.3(19)
144.37(6)	P(20)-W(1)-H(C)	68.8(19)
152.20(18)	P(29)-W(1)-H(A)	77.6(27)
94.29(6)	P(29)-W(1)-H(B)	77.6(19)
78.19(17)	P(29)-W(1)-H(C)	144.4(19)
63.35(19)	C(37)-W(1)-H(A)	129.0(27)
88.12(23)	C(37) - W(1) - H(B)	126.8(19)
107.3(5)	C(37)-W(1)-H(C)	82.1(19)
136.0(5)	H(A)-W(1)-H(B)	69.(3)
138.8(27)	H(A)-W(1)-H(C)	123.(3)
69.9(19)	H(B)-W(1)-H(C)	134.8(27)
84.3(19)		
	2.4498(22) 2.4381(20) 2.4866(21) 2.4609(23) 93.68(6) 147.67(6) 97.76(6) 80.67(17) 93.73(6) 144.37(6) 152.20(18) 94.29(6) 78.19(17) 63.35(19) 88.12(23) 107.3(5) 138.8(27) 69.9(19) 84.3(19)	(1 HC) 1 H) 2.4498(22) W(1)-C(37) 2.4381(20) W(1)-H(A) 2.4381(20) W(1)-H(A) 2.4381(20) W(1)-H(A) 2.4381(20) W(1)-H(A) 2.4381(20) W(1)-H(A) 2.4866(21) W(1)-H(B) 2.4609(23) W(1)-H(C) 93.68(6) P(11)-W(1)-H(A) 147.67(6) P(11)-W(1)-H(C) 80.67(17) P(20)-W(1)-H(C) 80.67(17) P(20)-W(1)-H(C) 143.7(6) P(20)-W(1)-H(C) 152.20(18) P(29)-W(1)-H(C) 152.20(18) P(29)-W(1)-H(C) 63.35(19) C(37)-W(1)-H(C) 63.35(19) C(37)-W(1)-H(C) 63.35(19) C(37)-W(1)-H(C) 136.0(5) H(A)-W(1)-H(C) 138.8(27) H(A)-W(1)-H(C) 138.8(27) H(A)-W(1)-H(C) 84.3(19) H(B)-W(1)-H(C)

of 1.2-3.5 e/Å³ within 2 Å of the tungsten atom. The R for averaging decreased from 0.048 to 0.018 upon application of the absorption correction, and the residual dropped from 0.049 to 0.032. A difference Fourier clearly revealed the positions of the hydride atoms, and they were included in the final cycles of the refinement. A final difference Fourier revealed only random noise (all peaks less than 0.35 e/Å³) except for one peak of 1.4 e/Å³ at the metal site. The results of the structure determination are shown in Tables 3 and 4 and Figure 1.

NMR Spectral Simulations. (a) $WH_2Cl_2L_4$. The hydride multiplet is accurately described as a doublet of doublets of triplets. However, since the spin system is actually $A_2MM'XX'$ (A and M are P, X is H),

⁽⁶⁾ For details of general crystallographic, computer, and diffractometer procedures, see: Huffman, J. C.; Lewis, L. N.; Caulton, K. G. Inorg. Chem. 1980, 19, 2755.

Figure 2. Observed (top) and simulated (bottom) hydride region 500-MHz ¹H NMR spectra of WH₃Cl(PMe₂Ph)₄.

the simple first-order appearance is deceptive. The X pattern in an MM'XX' spin system is a virtual triplet whenever $J_{MM'} \gg |J_{MX} + J_{MX}|$. This is relevant since phosphorus nuclei in WH₂Cl₂L₄ are nearly *trans* ($\angle P_M - W_- P_{M'} = 156.8^{\circ}$), so $J_{MM'}$ will be larger than the H–P coupling constants. When these are comparable in magnitude, a double doublet (which has two central lines nearly overlapped) can result. We have analyzed the latter deceptively simple spectrum to give the following coupling constants. For $J_{AM} = J_{AM'} = 14.8$ Hz and $J_{AX} = J_{AX'} = 60.5$ Hz, the $J_{MM'}$ coupling has to be in the range 33-38 Hz, resulting in J_{MX}/J_{MX} pairs of 28.3/47.2 Hz for the lower and 27.4/48.1 Hz for the upper limit of $J_{MM'}$, respectively.

(b) WH₃ClL₄. In the case of WH₃ClL₄, the deceptive simplicity is even more accentuated. The MM'XX' spin subsystem has now collapsed to a triplet hydride pattern, and consequently it is only possible to fix sets of limits on $J_{MM'}$, J_{MX} , and $J_{MX'}$. Spectral simulations (Figure 2) yield the following: for a $J_{MM'}$ coupling between 40 and 120 Hz (upper limit arbitrarily stipulated; no higher P-P couplings have previously been observed in these systems) and $J_{AX} = 31.0$ Hz, $J_{QX} = 49.2$ Hz, and J_{XZ} = 6.7 Hz, $J_{MX}/J_{M'X}$ lies between 33/43 Hz and 31.5/44.5 Hz, respectively.

Results

Synthesis of WH₂Cl₂(PMe₂Ph)₄. Although the compound was characterized some years ago, there was no rational synthesis for WH₂Cl₂L₄ to date. Richards³ obtained the complex as a side product in the synthesis of W(N₂)₂L₄ without knowing the source of the hydride ligands. We were able to form the compound in a quantitative yield by simply exposing WCl₂L₄ to 1.5 atm of hydrogen for 10 h.⁷

$$WCl_2L_4 + H_2 \rightarrow WH_2Cl_2L_4 \tag{1}$$

Temperature Dependence of the Chemical Shifts in WH₂Cl₂L₄. The chemical shifts in both the ³¹P{¹H} and the ¹H NMR of WH₂Cl₂(PMe₂Ph)₄ are temperature-dependent. For the A₂M₂ system (see Chart 1) in ³¹P{¹H} NMR, two well-resolved triplets are observed at 25 °C at δ -10.9 (P_M) and -14.1 (P_A). At lower temperatures, they individually broaden and then (at -80 °C) collapse. There is no significant shift of the signal of nuclei P_M (-11.1 ppm at -80 °C), while the P_A resonance displays strong (3 ppm) temperature dependence. ¹H NMR spectra of WH₂-Cl₂(PMe₂Ph)₄ reveal a similar behavior. One of the two virtual triplets (δ 1.60) at 25 °C for the methyl protons of the dimethylphenylphosphine ligands shifts by only 0.16 ppm (δ 1.44) Scheme 1

at -90 °C, whereas the second signal shows a change of 0.48 ppm in the same temperature range, from $\delta 1.52$ (25 °C) to 1.04 (-90 °C). The hydride signal, which appears at $\delta -1.52$ at 25 °C, undergoes a high-field shift to $\delta -1.96$ at -90 °C. It is remarkable that, at all temperatures, the sharp-lined multiplet structure of the hydride pattern is retained, requiring that all coupling constants in this AA'M₂XX' spin system remain uninfluenced by temperature. This behavior rules out the possibility of substantial structural rearrangement of the inner coordination sphere as an explanation of the observed temperature dependence.

Therefore, the reason for the temperature dependence of the chemical shifts has to be in the outer sphere of the molecule, suggesting temperature-dependent populations of different rotamers (around the W-P and P-C bonds). We attribute this to the crowding consequent on coordinating *four* phosphines to a single metal. However, despite the highly crowded molecule, no individual rotamers are frozen out between +25 °C and -90 °C. In the ¹H NMR, both methyl signals as well as the lines of the hydride pattern show no significant broadening at low temperatures.

Reactivity of WH₂Cl₂(PMe₂Ph)₄. In order to better understand the reactivity of WH₂Cl₂L₄, we have studied it for possible exchange with D₂. Treatment of WH₂Cl₂L₄ in benzene with excess D₂ (1 atm) gives a mixture of WD₂Cl₂L₄ (72%),⁸ WHDCl₂L₄ (26%), and WH₂Cl₂L₄ (2%) within 2.5 h at 25 °C. The ²H NMR spectrum of the unseparated reaction solution shows that there is no deuteration of the substituents in the PMe₂-Ph ligand. The ³¹P{¹H} NMR spectrum exhibits complex but symmetrical multiplets due to P–D coupling. A difference in the phosphorus chemical shift of the different H/D isotopic labeled complexes is not observable. The hydride signals of WHDCl₂L₄ (-1.50 ppm) and WH₂Cl₂L₄ (-1.52 ppm) differ by only 0.02 ppm.

Initially, we assumed that the reverse of eq 1 might be the mechanism of the exchange reaction. However, reductive elimination of H_2 and oxidative addition of D_2 cannot account for the production of WHDCl₂L₄. Obviously, a second mechanism has to be involved.

Redistribution of Isotopomers. One possibility to achieve an isotopically-mixed hydride complex is by a hydride-bridged transition state. Therefore, equivalent amounts of $WH_2Cl_2(PMe_2-Ph)_4$ and isotopically pure $WD_2Cl_2(PMe_2Ph)_4$ (synthesized from $WCl_2(PMe_2Ph)_4$ and D_2) were dissolved in toluene- d_8 and monitored by ¹H NMR. After 3 h, a statistical distribution of 25% each of $WH_2Cl_2L_4$ and $WD_2Cl_2L_4$ and 50% of $WHDCl_2L_4$ was reached. The reaction implies (Scheme 1) predissociation of phosphine to create an empty metal site (A) and subsequent hydride bridging (B).

HD Equilibration. $WH_2Cl_2L_4$ seems to catalyze H_2/D_2 equilibration ($H_2 + D_2 \Longrightarrow 2$ HD). For confirmation, $WH_2Cl_2L_4$ was treated with 1 atm of HD in deuterated benzene. Mass spectroscopy was used as an analytical tool to determine the

⁽⁷⁾ Sharp, P. R.; Frank, K. G. Inorg. Chem. 1985, 24, 1808.

⁽⁸⁾ Percentages were evaluated by ¹H NMR. The hydride signals furnish a ratio of WHDCl₂L₄ to WH₂Cl₂L₄, and the methyl signals of the PMe₂-Ph ligands allow a determination of the population of all three isotopomers.

Scheme 2

composition of the gas phase. The initial mole ratio of $WH_2-Cl_2L_4$:HD was 1:8.5. As is evident from Table 1, the gas composition after 3 h is close to a statistical distribution of H_2 , HD, and D_2 . It appears obvious that a combination of reductive elimination of H_2 and oxidative addition of HD (according to eq 1) and hydride bridging would serve as a completely satisfactory explanation of the observed equilibration. However, the synthesis of $WH_2Cl_2L_4$ via oxidative addition of H_2 to WCl_2L_4 showed that even under a large head space of H_2 and vigorous stirring, the reaction is very slow and cannot account for the fast equilibration of HD, particularly under the condition of a manyfold excess of HD which would require 8.5 times the oxidative addition of HD per molecule WCl_2L_4 . Therefore, other mechanisms have to be taken into consideration.

Exchange Mechanism. If one excludes an HCl-elimination mechanism (which is discussed later), these observations implicate an intermediate containing *four* hydrogen atoms in some bonding form (i.e., WH_4L_n , $W(H_2)H_2L_n$, or $W(H_2)_2L_n$).

(a) Associative Mechanism. One conceivable mechanism involves direct coordination of H_2 to $WH_2Cl_2L_4$, involving a 20e-species as a transition state. To investigate this possibility under conditions where phosphine dissociation is hindered, we subjected a solid sample of $WH_2Cl_2L_4$ to a large excess of D_2 . After 7 d, a thin layer dispersed on the interior of a glass vessel showed no sign of any deuteration (³¹P and ²H NMR assay), suggesting that, in the solid state, a 20e⁻ transition state is not capable of effecting exchange of $WH_2Cl_2L_4$ with D_2 . This also provides supporting evidence that, when phosphine dissociation is prevented, the exchange mechanism observed in solution is also stopped.

(b) Pre-equilibrium Dissociation of HCl. An alternative source of a monodeuteride complex and HD from $WH_2Cl_2L_4$ and D_2 would involve a mechanism involving reductive elimination of HCl. Subsequent D_2 addition, loss of HD, and oxidative addition of HCl would also lead to a complex of the composition $WHDCl_2L_4$.

$$WH_{2}Cl_{2}L_{4} \stackrel{-HCl}{\underset{+HCl}{\rightleftharpoons}} [WHClL_{4}] \stackrel{+D_{2}}{\underset{-D_{2}}{\rightleftharpoons}} WHD_{2}ClL_{4} \stackrel{-HD}{\underset{+HD}{\rightleftharpoons}} [WDClL_{4}] \stackrel{+HCl}{\underset{-HCl}{\rightleftharpoons}} WHDCl_{2}L_{4}$$

However, WH_3ClL_4 (analogous to WHD_2ClL_4 in the above proposed mechanism) is an isolable species whose spectral characteristics are well established (see below). None of it is detected in separate experiments where $WH_2Cl_2L_4$ is exposed to H_2 . Thus, HCl reductive elimination is not a viable mechanism for scrambling of HD, and we are left with preequilibrium phosphine dissociation as most consistent with the full body of observations.

(c) Phosphine Dissociation. Evidently phosphine dissociation must be the initial step (Scheme 2). Unfortunately, no intermediate "WH₄Cl₂L₃" could be detected in ¹H and ³¹P{¹H} NMR studies of WH₂Cl₂L₄ under 1 atm H₂ in a temperature range from +25 to -85 °C. Independent investigations⁹ of the mechanism for the synthesis of WH₂I₂(PMe₃)₄ from WI₂(PMe₃)₄ and H_2 have also shown phosphine dissociation as the first step. Our bulkier phosphine should enhance phosphine dissociation. Consistent with this result is our observation that $WH_2Cl_2L_4$ is completely consumed within 3 h at 25 °C by excess PMe₃. The corresponding amount of free PMe₂Ph is also observed in this trapping of transient " $WH_2Cl_2L_3$ ".

Synthesis of $WH_3Cl(PMe_2Ph)_4$. Reaction of equimolar WH_2 -Cl₂L₄ and LiBEt₃H in THF at or below 0 °C gives clean conversion to WH_3ClL_4 , which can be isolated. The molecule is soluble in organic solvents but has a tendency to decompose in solution (even hydrocarbons) to PMe₂Ph and WH_6L_3 . Such decomposition is not halted by added PMe₂Ph.

The ³¹P{¹H} NMR spectrum of WH₃ClL₄ consists of an AM₂Q pattern, indicating the presence of a mirror plane of symmetry. In the ¹H NMR spectrum, the hydride ligands appear as two different chemical shifts, +2.15 and -2.54 ppm, with intensities 1:2. The former is in a sufficiently unusual region that its detection was initially overlooked. It was first detected by recording the ²H{¹H} NMR spectrum of WD₃ClL₄ (see below for synthesis), where the +2.15 ppm multiplet is not obscured by aliphatic protons. Each hydride resonance is a well-resolved multiplet which conforms to the X and Z part of an AMM'QXX'Z spin system. Together, these results are consistent with a dodecahedral structure (**C**, which shows atom labels for the inner coordination

sphere) derived by replacing one Cl by H in the structure of $WH_2Cl_2L_4$. This structure requires four PMe proton chemical shifts, consistent with what is observed. The two methyl signals from P_M and $P_{M'}$ appear as virtual triplets while those on P_A and P_Q are doublets. It bears mention that the number of hydrides might suggest a structure derived from an ideal cube by retention of its C_3 axis (**D**, which shows an idealized cube of ligating atoms

around the tungsten). This, however, is inconsistent with the observed spectra. Moreover, although this would appear to be easily formed from C, the activation energy for this deformation must be large: D would effect site exchange of the three hydrides (and of three of the four phosphorus nuclei), but the molecule is observed to be (surprisingly) rigid.

Stereochemistry of Replacement of Chloride by Hydride in WH₂Cl₂L₄. We have investigated the stereochemistry of the transformation of WH₂Cl₂L₄ into WH₃ClL₄. Reaction in THF of WH₂Cl₂L₄ with equimolar LiBEt₃D does not begin until -40 °C. At this temperature, the ²H NMR spectrum shows only one W-D signal, at -2.5 (due to H_x in C), together with the single

⁽⁹⁾ Rabinovich, D.; Parkin, G. J. Am. Chem. Soc. 1993, 115, 353. Phosphine dissociation is also implicated for WCl₂(PMePh₂)₄. See: Hall, K. A.; Mayer, J. M. J. Am. Chem. Soc. 1992, 114, 10402. Atagi, L. M.; Critchlow, S. C.; Mayer, J. M. J. Am. Chem. Soc. 1992, 114, 1483.

Scheme 3

$$WH_{2}Cl_{2}L_{4} \xrightarrow{-L_{-}} \left[WH_{2}Cl_{2}L_{3}\right]$$

$$E$$

$$\xrightarrow{+ Li(DBEt_{3})} \left[W(\eta^{2}-HD)HCl_{3}\right] \xrightarrow{+ L_{-}} WHDHCl_{4}$$

F

(average) resonance of the rapid equilibrium in eq 2. The ${}^{31}P{}^{1}H{}$

$$Et_{3}BD^{-} + BEt_{3} \rightleftharpoons Et_{3}B - D - BEt_{3}^{-}$$
(2)

NMR spectrum at this point shows only $WH_2Cl_2L_4$ and WH_2-DClL_4 . As the temperature is raised to -30 °C and then -20 °C, $WH_2Cl_2L_4$ disappears and more WH_2DClL_4 appears (by ³¹P NMR), and only the H_x signal of WH_2DClL_4 grows.¹⁰ The reaction is thus selective for forming $C-d_1$ (eq 3); it does not

simply place D in a chloride site of an undisturbed dodecahedron. Most remarkably, this molecule is stereochemically rigid on the time scale of 1 day: in ${}^{2}H{}^{1}H{}$ NMR C-d₁ shows less than 20% migration of deuterium to the Z site (see C) after 24 h.

Mechanism of Formation of $WH_2DCl(PMe_2Ph)_4$. A general consideration of the characteristics of the mechanism of eq 3 reveals two requirements. The reaction must destroy the symmetry of the two hydrides in $WH_2Cl_2L_4$. It must also make one of the original hydrides equivalent to the arriving deuteride. This latter could be accomplished either early or late in the mechanism. One mechanism which would make H and D equivalent very early in the reaction pathway is deprotonation of $WH_2Cl_2L_4$ (eq 4). In subsequent steps, lithium-assisted removal of a chloride ligand and oxidative addition of HD would show the observed stereoselectivity.

$$WH_2Cl_2L_4 + LiBEt_3D \rightarrow Li^+ + [WHCl_2L_4^-] + HD + BEt_3$$
(4)

To test this mechanism, we have carried out the reaction of $WH_2Cl_2L_4$ with LiBEt₃H at -20 °C under 1 atm of D₂. The reaction was executed in a vessel with a large head space, large liquid surface area, and vigorous stirring, to ensure solution saturation with D₂ and optimal mixing of D₂ with any liberated H₂. After 30 min, when the reaction had proceeded 50% to completion, there was no evidence (¹H and ²H NMR of the hydride signals) for deuterium incorporation.¹¹ We therefore conclude that a mechanism involving deprotonation of WH₂Cl₂L₄, with liberation of HD into the bulk solution (eq 4), may be excluded.

Therefore, we again considered a mechanism (Scheme 3) dissociative in phosphine (E) followed by replacement of chloride by deuteride. Loss of phosphine leaves the metal electron-poor and thus favors formation of an η^2 -HD ligand, in which H and

D are equivalent (F). Subsequent phosphine association increases the electron density at the tungsten and cleaves the H–D bond. Similar considerations may explain the lack of facile site exchange via phosphine dissociation in WH_2DClL_4 .

Attempted Replacement of Halide Ligands by Nucleophiles. (a) Attempted Single Chloride Replacement. It was our goal to transform $WH_2Cl_2(PMe_2Ph)_4$ into a hydrido compound which also contained a stronger π -donor ligand than chloride. This was attempted by reaction of $WH_2Cl_2(PMe_2Ph)_4$ with alkali metal amides and alkoxides, using both noncoordinating (toluene) and coordinating (THF) solvents. The general consequence of these studies is to reinforce the conclusion of Richards² (using NEt₃ as base) that $WH_2Cl_2(PMe_2Ph)_4$ is quite prone to dehydrochlorination by an added Brønsted base.

In THF solvent, we find that HCl elimination is apparently followed by THF coordination, to give paramagnetic products (no ¹H or ³¹P{¹H} NMR signals). No significant amount of phosphine is liberated in these reactions. Attempted isolation and crystallization gave only variable yields of WH₃Cl(PMe₂-Ph)₄, and this effort was therefore abandoned. A change to toluene solvent with MOR (M = Na, K; OR = OCMe(CF₃)₂, OSiMe₂-Ph) yielded similar results.

In toluene, alkali metal amides showed very different behavior. Dehydrochlorination was followed by *ortho*-metalation of a phosphine phenyl ring. Thus, from $KN(SiMe_3)_2$ and WH_2 -Cl₂(PMe₂Ph)₄ in toluene at 25 °C, there is an immediate color change. Workup yields $WH_2Cl(\eta^2-C_6H_4PMe_2)(PMe_2Ph)_3$, identified as *ortho*-metalated by an A₂EM ³¹P{¹H} NMR pattern with a remarkably high-field shift (to -59.6 ppm) of the M nucleus (compare E at -20.9 and A at -12.4 ppm). Structure G (lines

connect ligands which form trapezoids of the dodecahedron and are not chemical bonds) is consistent with this information and predicts four P-Me ¹H NMR chemical shifts, which is what is observed. Moreover, two of these methyl signals are virtual triplets, which we assign to the diastereotopic methyls on P_A and P_A' . Two aryl protons fall at the limits of the typical aryl region. These, at 6.4 and 8.3 ppm, we assign to the hydrogens most influenced by metalation: H_a and H_b in structure G. The two hydrides in structure G, being related by a mirror plane of symmetry, appear as a single chemical shift (-0.89 ppm) but as a non-first-order multiplet (15 lines of a AA'EMYY' spin system).

This reaction of KN(SiMe₃)₂ with WH₂Cl₂(PMe₂Ph)₄ in toluene also produces smaller amounts of dark red side products (altogether ~10%). These, as well as the amine NH(SiMe₃)₂, are difficult to separate from the highly soluble WH₂Cl(η^2 -C₆H₄-PMe₂)(PMe₂Ph)₃. Therefore, WH₂Cl₂(PMe₂Ph)₄ was reacted in toluene with 1 equiv of ^tBuLi in *n*-hexane or neopentyllithium. The reactions are instantaneous and form the desired WH₂Cl-(η^2 -C₆H₄PMe₂)(PMe₂Ph)₃ in yields above 95% (by ³¹P{^tH} NMR). However, its hexane solubility as well as its thermal sensitivity result in yields of only 30% after crystallization. As a working hypothesis, we suggest that the *ortho*-metalation implies the intermediacy of a reduced, unsaturated species (eq 5, η^2 -L = η^2 -C₆H₄PMe₂).

$$WH_2Cl_2L_4 + MR \xrightarrow[-RH]{-RH} [WHClL_4] \rightarrow WH_2Cl(\eta^2 - L)L_3$$
(5)

⁽¹⁰⁾ The ²H NMR signal due to eq 2 moves further upfield as the equilibrium shifts away from the -0.7 ppm position of LiBEt₃D in THF.
(11) At this temperature, the D₂ exchange of WH₂Cl₂L₄ and WH₃ClL₄ is

⁽¹¹⁾ At this temperature, the D₂ exchange of WH₂Cl₂L₄ and WH₃ClL₄ is very slow and in the course of the experiment not detectable by NMR. However, to avoid any D₂ contamination of the starting material or the product by D₂ exchange, all manipulations until the removal of D₂ from the gas phase had to be done at -20 °C.

It is reasonable that a coordinating solvent (THF) could intercept WHCl(PMe₂Ph)₄ before metalation of the phenyl group could occur, and this would be the source of the paramagnetic products we encountered in THF solvent. In order to test our hypothesis, and to use this dehydrochlorination for some rational purpose, WH₂Cl₂(PMe₂Ph)₄ was reacted (25 °C) with 1 equiv of *n*-BuLi in toluene in the presence of excess H₂. We anticipated that H₂ would trap WHCl(PMe₂Ph)₄, and we indeed observe over 70% yield of WH₃Cl(PMe₂Ph)₄. However, WH₃Cl(PMe₂-Ph)₄ is *also* produced by this same reaction (at -40 °C) in the *absence* of H₂ (together with a small amount of WH₂Cl(η^2 -L)-L₃), implicating a different mechanism for an alkyl reagent containing β -hydrogens (eq 6) from that in eq 5.

$$WH_2Cl_2(PMe_2Ph)_4 + n-BuLi \xrightarrow{-L} (6)$$

 $\begin{array}{c} WH_2Cl(n-Bu)(PMe_2Ph)_X & \longrightarrow & WH_3Cl(PMe_2Ph)_4 + 1-butene \\ H & & WH_2Cl(\eta^2-L)L_3 + n-butane \end{array}$

(b) Attempted Double Chloride Replacement. The above results implicate an alkyl intermediate H, which β -hydrogen eliminates at a rate competitive with its reductive elimination of butane. Consistent with this hypothesis, if WH₂Cl₂(PMe₂Ph)₄ is reacted with 2 equiv of *n*-BuLi (or correspondingly WH₃Cl(PMe₂Ph)₄ with 1 equiv *n*-BuLi), then mainly WH₄(PMe₂Ph)₄ (the product of two β -hydrogen eliminations) but also WH₃(η^2 -C₆H₄-PMe₂)(PMe₂Ph)₃ (25% yield, ¹² as the product of one β -hydrogen elimination and one ortho-metalation) are observed (eq 7).

$$WH_3Cl(PM_{69}Ph)_{4} \xrightarrow{+ n-BuLi}$$
(7)

WH₃(n-Bu)(PMe₂Ph)₄ WH₃(n²-C₆H₄PMe₂)(PMe₂Ph)₃ + n-butane

However, $WH_3(\eta^2-L)L_3$ can be obtained (eq 8) in >80% yield

$$WH_{2}CI_{2}L_{4} \xrightarrow{LIX}_{X = {}^{1}Bu} WH_{2}CI(\eta^{2}-L)L_{3} \xrightarrow{LIX}$$

$$\begin{bmatrix} I \\ \\ WH_{2}(\eta^{2}-L)L_{x} \end{bmatrix} \xrightarrow{- \longrightarrow}_{- \longrightarrow} WH_{3}(\eta^{2}-L)L_{3} \qquad (8)$$

by the reaction of $WH_2Cl_2L_4$ with 2 equiv of 'BuLi or LiNMe₂. WH₃(η^2 -L)L₃ here is thus the product of monodehydrochlorination (see I in eq 8) and a β -hydrogen elimination after successful substitution of the second chloride ligand by the nucleophile (**J** in eq 8). For confirmation, $WH_2Cl(\eta^2$ -L)L₃ was reacted with 1 equiv of 'BuLi and LiNMe₂, respectively. This yields exclusively $WH_3(\eta^2$ -L)L₃. Use of KN(SiMe₃)₂ as base for reaction with $WH_2Cl_2L_4$ even in a 5-fold excess yields only $WH_2Cl(\eta^2$ -L)L₃. A substitution of the last chloride ligand by this bulky amide is not possible. These reactions are summarized in Scheme 4.

Surprisingly, a 1:2 reaction of WH₂Cl₂L₄ with MeLi or Me₃-CCH₂Li (both of which lack β -hydrogens) forms WH₃(η^2 -L)L₃ in high yields. To exclude the solvent, toluene, as the source of hydrogen, the reaction was executed in toluene-d₈. After completion of the reaction, all volatiles were removed. The remaining organometallic product showed (by ²H NMR) no evidence for any deuteration. Furthermore, for reaction with

Me₃CCH₂Li, the volatiles were investigated by GC/MS, revealing at least six organic products, one of which is 2,2,5,5-tetramethylhexane. All products show a MS pattern typical for aliphatic hydrocarbons. None was present in the solvent employed. Therefore, the third hydride ligand derives from α - or γ -elimination. The resulting carbenes react unselectively to give a mixture of different organic products.¹³

Orange crystals of $WH_3(\eta^2-L)L_3$ obtained from a hexane solution were suitable for an X-ray diffraction structure determination.

Structure of $WH_3(\eta^2-C_6H_4PMe_2)(PMe_2Ph)_3$. The results of the X-ray diffraction structure determination both confirm and extend the conclusions from NMR spectroscopy. All hydrogens, including the hydrides, were located and refined. The molecule is eight-coordinate (Figure 1) and based on a dodecahedral form. Atoms P(2), P(20), H(A), and H(B) define one trapezoidal plane. The H_A-W-H_B angle is 69° with an H_A/H_B distance of 1.88 Å. Atoms P(11), H(C), C(37), and P(29) define another trapezoidal plane, which is also an idealized mirror plane of symmetry of the molecule. These two planes are approximately orthogonal. The bulkier phosphorus nuclei always occupy the less-hindered B sites of the trapezoidal (see K) planes which define a dodecahedron,

Κ

with hydride and carbon at the more crowded A sites. The rotational conformation about the W-P(2) and W-P(20) bonds directs two phenyl rings away from the (crowded) region where the metalated phenyl ring is bonded to tungsten. The WPCC ring involving the metalated carbon incorporates very small P(29)-W-C(37) (63.35'), W-P(29)-C(32) (88.12'), and P(29)-C(32)-C(37) (101.1') angles. While the P(29)-C(32) distance is short, 1.791(7) Å (compare the other P-C *ipso* distances of 1.827-(7)-1.846(6) Å), the C/C distances in the metalated ring show no unusual features. The W-P distances show an unusually large range of values (2.438(2)-2.487(2) Å), but these do not conform to the mirror symmetry of the inner coordination sphere and thus may originate from steric pressure on the aryl rings. Note particularly that the *ortho*-metalated phosphine has a W-P distance in the middle of the range.

Solution Behavior of WH₃(η^2 -L)L₃. An AB₂M ³¹P{¹H} NMR pattern is observed at 25 °C for 4, in agreement with the solidstate structure. The phosphorus P_M in the *ortho*-metalated ring shows a chemical shift (-79.7 ppm) to even higher field than in 3 (-59.6 ppm). The solid-state structure requires four methyl chemical shifts, two of which (on P_A and P_A') overlap to give one multiplet. Consistent with the solid-state structure, two hydride chemical shifts are observed (rather downfield, at -1.44 and +0.55 ppm), with intensities of 2:1. Overall, these observations establish

⁽¹²⁾ Yield calculated by ¹H and ³¹P{¹H} NMR.

⁽¹³⁾ This GC/MS study excludes moisture in solvent or on the glass wall as a source of the hydride ligands.

that compound 4 in solution is a stereochemically-rigid molecule with structure identical to that found in the solid.

Discussion

A remarkable aspect of these results is the stereochemical rigidity of the eight-coordinate polyhydrides WH₂Cl₂L₄ and WH₃-ClL₄. Eight-coordinate compounds are generally highly fluxional (although some notable exceptions exist¹⁴), and polyhydrides are almost universally fluxional. The finding (via the selectivelylabeled WH_2DClL_4) of a species which is stereochemically rigid on the time scale of 1 day is unprecedented. For reference, $WH_4(PMe_2Ph)_4$ is fluxional (10² sec⁻¹ at 28 °C), although the rearrangement barrier (15 kcal/mol) is somewhat higher than for many polyhydrides.15

The reactions of WH₂Cl₂L₄ with the nucleophiles KOR, KN- $(SiMe_3)_2$, and LiR fail to give isolable chloride substitution products (eq 9), yielding instead product distributions more

$$WH_2Cl_2L_4 + Nu^{-} + WH_2Cl(Nu)L_4 + Cl^{-}$$
(9)

suggestive of dehydrochlorination reactions. However, a more complete analysis of the results reported here show that not all of the reactions can be initiated by simple proton transfer to the base (nucleophile). This conclusion follows since proton transfer would produce the single species WHCl₂L₄", yet the observed reactions are different for different nucleophiles. Moreover, the product WH₃ClL₄ from *n*-BuLi implies β -hydrogen elimination Scheme 5

from an *n*-butyl intermediate (i.e., a product of chloride substitution).

The problem thus seems to originate not from a failure to substitute for chloride but rather from inherent instabilities (i.e., unimolecular reactivity) of the desired $WH_2Cl(Nu)L_4$. The facile occurrence of the proposed reductive elimination from this intermediate is, we feel, due to stabilization of the six-coordinate elimination product by lone pairs on the chloride ligand (Scheme 5, where G = X carries a lone pair while G = R has none). The preferred reagent for synthesis of a hydrido/ π -donor mixed-ligand compound is thus WH₃ClL₄, since the initial product of chloride substitution is now kinetically inhibited from reductive elimination (it lies on curve B in Scheme 5). In general, this reasoning predicts special problems (i.e., instability) will be associated with trying to synthesize hydride/ π -donor mixed-ligand compounds when there is more than one π -donor present.

Acknowledgment. This work was supported by the National Science Foundation. We also thank Steve Studley for mass spectral analyses.

Supplementary Material Available: Tables listing full crystallographic details, full atomic coordinates and B values, anisotropic thermal parameters, and bond distances and angles (6 pages). Ordering information is given on any current masthead page.

⁽¹⁴⁾ Lecaphon, M.; Fanwick, P. E.; Walton, R. A. J. Am. Chem. Soc. 1991, 113, 1424. Chiu, K. W.; Jones, R. A.; Wilkinson, G.; Galas, A. M. R.; Hursthouse, M. B.; Malik, K. M. A. J. Chem. Soc., Dalton Trans. 1981, 1204. Green, M. L. H.; Parkin, G.; Chen, M.; Prout, K. J. Chem. Soc., Dalton Trans. 1986, 2227. Rabinovich, D.; Zelman, R.; Parkin, G. J. Am. Chem. Soc. 1992, 114, 4611. (15) Meakin, P.; Guggenberger, L. J.; Peet, W. G.; Muetterties, E. L.; Jesson,

J. P. J. Am. Chem. Soc. 1973, 95, 1467.